2024-10-25
分享到
在一个时间里的一个层次的无监督训练,接着之前训练的层次。在每一层学习到的表示作为下一层的输入;
2006年前,尝试训练深度架构都失败了:训练一个深度有监督前馈神经网络趋向于产生坏的结果(同时在训练和测试误差中),然后将其变浅为1(1或者2个隐层)。
我们可以将深度架构看做一种因子分解。大部分随机选择的函数不能被有效地表示,无论是用深地或者浅的架构。但是许多能够有效地被深度架构表示的却不能被用浅的架构高效表示(see the polynomials example in theBengio surБайду номын сангаасey paper)。一个紧的和深度的表示的存在意味着在潜在的可被表示的函数中存在某种结构。如果不存在任何结构,那将不可能很好地泛化。
从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算并且一个计算的值(计算的结果被应用到这个节点的孩子节点的值)。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有孩子,输出节点没有父亲。
例如,视觉皮质得到了很好的研究,并显示出一系列的区域,在每一个这种区域中包含一个输入的表示和从一个到另一个的信号流(这里忽略了在一些层次并行路径上的关联,因此更复杂)。这个特征层次的每一层表示在一个不同的抽象层上的输入,并在层次的更上层有着更多的抽象特征,他们根据低层特征定义。
需要注意的是大脑中的表示是在中间紧密分布并且纯局部:他们是稀疏的:1%的神经元是同时活动的。给定大量的神经元,任然有一个非常高效地(指数级高效)表示。
学习/发现这些概念(知识工程由于没有反省而失败?)是很美好的。对语言可表达的概念的反省也建议我们一个稀疏的表示:仅所有可能单词/概念中的一个小的部分是可被应用到一个特别的输入(一个视觉场景)。
从2006年以来,大量的关于深度学习的论文被发表,一些探讨了其他原理九游智能体育科技来引导中间表示的训练,查看Learning Deep Architectures for AI
对于表达 的流向图,可以通过一个有两个输入节点 和 的图表示,其中一个节点通过使用 和 作为输入(例如作为孩子)来表示 ;一个节点仅使用 作为输入来表示平方;一个节点使用 和 作为输入来表示加法项(其值为 );最后一个输出节点利用一个单独的来自于加法节点的输入计算SIN。
这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。